Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645162

RESUMO

Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, informing antiretroviral therapies that contain lenacapavir.

2.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328132

RESUMO

Integrase (IN) performs dual essential roles during HIV-1 replication. During ingress, IN functions within an oligomeric "intasome" assembly to catalyze viral DNA integration into host chromatin. During late stages of infection, tetrameric IN binds viral RNA and orchestrates the condensation of ribonucleoprotein complexes into the capsid core. The molecular architectures of HIV-1 IN assemblies that mediate these distinct events remain unknown. Furthermore, the tetramer is an important antiviral target for allosteric IN inhibitors. Here, we determined cryo-EM structures of wildtype HIV-1 IN tetramers and intasome hexadecamers. Our structures unveil a remarkable plasticity that leverages IN C-terminal domains and abutting linkers to assemble functionally distinct oligomeric forms. Alteration of a newly recognized conserved interface revealed that both IN functions track with tetramerization in vitro and during HIV-1 infection. Collectively, our findings reveal how IN plasticity orchestrates its diverse molecular functions, suggest a working model for IN-viral RNA binding, and provide atomic blueprints for allosteric IN inhibitor development.

3.
Nat Med ; 29(12): 3212-3223, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957382

RESUMO

Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Masculino , Feminino , HIV-1/genética , Viremia , Provírus/genética , Provírus/metabolismo , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos , RNA Viral , Carga Viral
4.
J Acquir Immune Defic Syndr ; 94(2S): S116-S121, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707858

RESUMO

BACKGROUND: The underrepresentation of historically marginalized groups in the HIV research workforce is a barrier to reaching national Ending the Epidemic goals. SETTING: The Harvard University Center for AIDS Research (HU CFAR) Diversity Equity and Inclusion Working Group (DEI WG) uses a multifaceted approach to enhance the field's diversity. METHODS: We established a DEI WG to improve the recruitment, inclusion, and retention of underrepresented minorities (URMs) in HIV research. We use community-based, participatory processes to establish and expand education and outreach programs about HIV care and research to better connect the HU CFAR to communities affected by HIV. This article reports on the development of the WG in July 2022, progress in its first year, and future plans. RESULTS: We have built a network of >50 investigators across the university for monthly meetings; partnered with existing research pathway programs for high school, undergraduate, and graduate students, directly supporting 7 new trainees and linking CFAR investigators to additional mentorship opportunities; and created 2-year Scholar Awards for 5 URM investigators in HIV. Planned work includes needs assessments for early-stage investigators to understand factors contributing to inclusion and retention and new pathway and outreach programming being developed with community partner minority-serving institutions. CONCLUSIONS: The HU CFAR DEI WG strives to ensure that individuals from underrepresented, marginalized, and minoritized communities have an opportunity to contribute to HIV research and that research is informed by the needs of the communities affected by the epidemic. An intersectional approach should be incorporated into HIV research pathway initiatives.


Assuntos
Síndrome de Imunodeficiência Adquirida , Distinções e Prêmios , Infecções por HIV , Humanos , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Instituições Acadêmicas , Escolaridade
5.
Microbiol Mol Biol Rev ; 87(4): e0004822, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37750702

RESUMO

The HIV-1 capsid, composed of approximately 1,200 copies of the capsid protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and integrase proteins. After cell entry, the capsid interacts with a myriad of host factors to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then traffic to chromosomal sites for viral DNA integration. Integration may very well require the dissolution of the capsid, but where and when this uncoating event occurs remains hotly debated. Based on size constraints, a long-prevailing view was that uncoating preceded nuclear transport, but recent research has indicated that the capsid may remain largely intact during nuclear import, with perhaps some structural remodeling required for NPC traversal. Completion of reverse transcription in the nucleus may further aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell impart avid host factor binding for productive HIV-1 infection. Herein we overview capsid-host interactions implicated in HIV-1 ingress and discuss important research questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, was recently approved to treat people living with HIV.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , HIV-1/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Transporte Ativo do Núcleo Celular/genética
6.
medRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034605

RESUMO

Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.

7.
Proc Natl Acad Sci U S A ; 120(13): e2202815120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943880

RESUMO

Increasing evidence has suggested that the HIV-1 capsid enters the nucleus in a largely assembled, intact form. However, not much is known about how the cone-shaped capsid interacts with the nucleoporins (NUPs) in the nuclear pore for crossing the nuclear pore complex. Here, we elucidate how NUP153 binds HIV-1 capsid by engaging the assembled capsid protein (CA) lattice. A bipartite motif containing both canonical and noncanonical interaction modules was identified at the C-terminal tail region of NUP153. The canonical cargo-targeting phenylalanine-glycine (FG) motif engaged the CA hexamer. By contrast, a previously unidentified triple-arginine (RRR) motif in NUP153 targeted HIV-1 capsid at the CA tri-hexamer interface in the capsid. HIV-1 infection studies indicated that both FG- and RRR-motifs were important for the nuclear import of HIV-1 cores. Moreover, the presence of NUP153 stabilized tubular CA assemblies in vitro. Our results provide molecular-level mechanistic evidence that NUP153 contributes to the entry of the intact capsid into the nucleus.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , HIV-1/metabolismo , Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Infecções por HIV/metabolismo , Poro Nuclear/metabolismo
8.
mBio ; 14(1): e0356022, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744954

RESUMO

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an emerging class of small molecules that disrupt viral maturation by inducing the aberrant multimerization of IN. Here, we present cocrystal structures of HIV-1 IN with two potent ALLINIs, namely, BI-D and the drug candidate Pirmitegravir. The structures reveal atomistic details of the ALLINI-induced interface between the HIV-1 IN catalytic core and carboxyl-terminal domains (CCD and CTD). Projecting from their principal binding pocket on the IN CCD dimer, the compounds act as molecular glue by engaging a triad of invariant HIV-1 IN CTD residues, namely, Tyr226, Trp235, and Lys266, to nucleate the CTD-CCD interaction. The drug-induced interface involves the CTD SH3-like fold and extends to the beginning of the IN carboxyl-terminal tail region. We show that mutations of HIV-1 IN CTD residues that participate in the interface with the CCD greatly reduce the IN-aggregation properties of Pirmitegravir. Our results explain the mechanism of the ALLINI-induced condensation of HIV-1 IN and provide a reliable template for the rational development of this series of antiretrovirals through the optimization of their key contacts with the viral target. IMPORTANCE Despite the remarkable success of combination antiretroviral therapy, HIV-1 remains among the major causes of human suffering and loss of life in poor and developing nations. To prevail in this drawn-out battle with the pandemic, it is essential to continue developing advanced antiviral agents to fight drug resistant HIV-1 variants. Allosteric integrase inhibitors (ALLINIs) are an emerging class of HIV-1 antagonists that are orthogonal to the current antiretroviral drugs. These small molecules act as highly specific molecular glue, which triggers the aggregation of HIV-1 integrase. In this work, we present high-resolution crystal structures that reveal the crucial interactions made by two potent ALLINIs, namely, BI-D and Pirmitegravir, with HIV-1 integrase. Our results explain the mechanism of drug action and will inform the development of this promising class of small molecules for future use in antiretroviral regimens.


Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Humanos , Regulação Alostérica , Inibidores de Integrase de HIV/farmacologia , Antivirais/uso terapêutico , Infecções por HIV/tratamento farmacológico
9.
Nat Struct Mol Biol ; 30(4): 425-435, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807645

RESUMO

Delivering the virus genome into the host nucleus through the nuclear pore complex (NPC) is pivotal in human immunodeficiency virus 1 (HIV-1) infection. The mechanism of this process remains mysterious owing to the NPC complexity and the labyrinth of molecular interactions involved. Here we built a suite of NPC mimics-DNA-origami-corralled nucleoporins with programmable arrangements-to model HIV-1 nuclear entry. Using this system, we determined that multiple cytoplasm-facing Nup358 molecules provide avid binding for capsid docking to the NPC. The nucleoplasm-facing Nup153 preferentially attaches to high-curvature regions of the capsid, positioning it for tip-leading NPC insertion. Differential capsid binding strengths of Nup358 and Nup153 constitute an affinity gradient that drives capsid penetration. Nup62 in the NPC central channel forms a barrier that viruses must overcome during nuclear import. Our study thus provides a wealth of mechanistic insight and a transformative toolset for elucidating how viruses like HIV-1 enter the nucleus.


Assuntos
HIV-1 , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , HIV-1/metabolismo , Linhagem Celular , Transporte Ativo do Núcleo Celular/genética , Proteínas do Capsídeo/metabolismo , DNA/metabolismo , Poro Nuclear/metabolismo
10.
Nat Commun ; 13(1): 5879, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202818

RESUMO

Cellular proteins CPSF6, NUP153 and SEC24C play crucial roles in HIV-1 infection. While weak interactions of short phenylalanine-glycine (FG) containing peptides with isolated capsid hexamers have been characterized, how these cellular factors functionally engage with biologically relevant mature HIV-1 capsid lattices is unknown. Here we show that prion-like low complexity regions (LCRs) enable avid CPSF6, NUP153 and SEC24C binding to capsid lattices. Structural studies revealed that multivalent CPSF6 assembly is mediated by LCR-LCR interactions, which are templated by binding of CPSF6 FG peptides to a subset of hydrophobic capsid pockets positioned along adjoining hexamers. In infected cells, avid CPSF6 LCR-mediated binding to HIV-1 cores is essential for functional virus-host interactions. The investigational drug lenacapavir accesses unoccupied hydrophobic pockets in the complex to potently impair HIV-1 inside the nucleus without displacing the tightly bound cellular cofactor from virus cores. These results establish previously undescribed mechanisms of virus-host interactions and antiviral action.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Príons , Humanos , Proteínas do Capsídeo/metabolismo , Drogas em Investigação , Glicina/metabolismo , HIV-1/metabolismo , Interações entre Hospedeiro e Microrganismos , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fenilalanina/metabolismo , Príons/metabolismo , Integração Viral
11.
Viruses ; 14(9)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36146690

RESUMO

Allosteric integrase (IN) inhibitors (ALLINIs), which are promising preclinical compounds that engage the lens epithelium-derived growth factor (LEDGF)/p75 binding site on IN, can inhibit different aspects of human immunodeficiency virus 1 (HIV-1) replication. During the late phase of replication, ALLINIs induce aberrant IN hyper-multimerization, the consequences of which disrupt IN binding to genomic RNA and virus particle morphogenesis. During the early phase of infection, ALLINIs can suppress HIV-1 integration into host genes, which is also observed in LEDGF/p75-depelted cells. Despite this similarity, the roles of LEDGF/p75 and its paralog hepatoma-derived growth factor like 2 (HDGFL2) in ALLINI-mediated integration retargeting are untested. Herein, we mapped integration sites in cells knocked out for LEDGF/p75, HDGFL2, or both factors, which revealed that these two proteins in large part account for ALLINI-mediated integration retargeting during the early phase of infection. We also determined that ALLINI-treated viruses are defective during the subsequent round of infection for integration into genes associated with speckle-associated domains, which are naturally highly targeted for HIV-1 integration. Class II IN mutant viruses with alterations distal from the LEDGF/p75 binding site moreover shared this integration retargeting phenotype. Altogether, our findings help to inform the molecular bases and consequences of ALLINI action.


Assuntos
Fármacos Anti-HIV , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Fármacos Anti-HIV/farmacologia , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , HIV-1/genética , HIV-1/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , RNA , Integração Viral , Replicação Viral
12.
Nucleic Acids Res ; 50(15): 8898-8918, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947647

RESUMO

Integration into host target DNA (tDNA), a hallmark of retroviral replication, is mediated by the intasome, a multimer of integrase (IN) assembled on viral DNA (vDNA) ends. To ascertain aspects of tDNA recognition during integration, we have solved the 3.5 Å resolution cryo-EM structure of the mouse mammary tumor virus (MMTV) strand transfer complex (STC) intasome. The tDNA adopts an A-like conformation in the region encompassing the sites of vDNA joining, which exposes the sugar-phosphate backbone for IN-mediated strand transfer. Examination of existing retroviral STC structures revealed conservation of A-form tDNA in the analogous regions of these complexes. Furthermore, analyses of sequence preferences in genomic integration sites selectively targeted by six different retroviruses highlighted consistent propensity for A-philic sequences at the sites of vDNA joining. Our structure additionally revealed several novel MMTV IN-DNA interactions, as well as contacts seen in prior STC structures, including conserved Pro125 and Tyr149 residues interacting with tDNA. In infected cells, Pro125 substitutions impacted the global pattern of MMTV integration without significantly altering local base sequence preferences at vDNA insertion sites. Collectively, these data advance our understanding of retroviral intasome structure and function, as well as factors that influence patterns of vDNA integration in genomic DNA.


Assuntos
Integrases , Integração Viral , Animais , Camundongos , Integrases/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , DNA Viral/genética , DNA Viral/química , Conformação Molecular , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/metabolismo
13.
PLoS Pathog ; 18(8): e1010754, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35951676

RESUMO

In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , HIV-1/genética , Vírion/metabolismo , Replicação Viral , Desenvelopamento do Vírus , Integração Viral
14.
Nucleic Acids Res ; 50(12): 6687-6701, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713529

RESUMO

The retrovirus human immunodeficiency virus-1 (HIV-1) is the causative agent of AIDS. Although treatment of HIV/AIDS with antiretroviral therapy provides suppression of viremia, latent reservoirs of integrated proviruses preclude cure by current antiviral treatments. Understanding the mechanisms of host-viral interactions may elucidate new treatment strategies. Here, we performed a CRISPR/Cas9 transcriptional activation screen using a high-complexity, genome-wide sgRNA library to identify cellular factors that inhibit HIV-1 infection of human CD4+ T cells. MT4 cells were transduced with a CRISPR/Cas9 sgRNA library and infected with nef-deficient HIV-1NL4-3 expressing ganciclovir-sensitive thymidine kinase, thus enabling selection of HIV-1-resistant cells for analysis of enriched sgRNAs. After validation of screen hits, multiple host factors essential for HIV-1 infection were identified, including SET (SET nuclear proto-oncogene) and ANP32A (acidic nuclear phosphoprotein 32A, PP32A), which together form a histone acetylase inhibitor complex. Using multiple human cell lines and peripheral blood mononuclear cells (PBMCs) from healthy donors and HIV-1-infected individuals, we demonstrate that SET depletion increased HIV-1 infectivity by augmenting DNA integration without significantly changing sites of integration. Conversely, SET overexpression decreased HIV-1 integration and infectivity. SET protein expression was significantly reduced in PBMCs from HIV-1-infected individuals and was downregulated by HIV-1 infection of healthy donor cells in vitro. Notably, HIV-1-induced downregulation of SET could be alleviated by inhibition of the protease granzyme A. Altogether, we have identified cellular inhibitors of HIV-1 infection on a genome-wide scale, which affords new insight into host-virus interactions and may provide new strategies for HIV-1 treatment.


Assuntos
HIV-1 , Humanos , Sistemas CRISPR-Cas , Histona Acetiltransferases , HIV-1/genética , Leucócitos Mononucleares , Proteínas Nucleares , Proteínas de Ligação a RNA , Ativação Transcricional , Integração Viral
15.
Nat Commun ; 13(1): 2416, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504909

RESUMO

A multimer of retroviral integrase (IN) synapses viral DNA ends within a stable intasome nucleoprotein complex for integration into a host cell genome. Reconstitution of the intasome from the maedi-visna virus (MVV), an ovine lentivirus, revealed a large assembly containing sixteen IN subunits1. Herein, we report cryo-EM structures of the lentiviral intasome prior to engagement of target DNA and following strand transfer, refined at 3.4 and 3.5 Å resolution, respectively. The structures elucidate details of the protein-protein and protein-DNA interfaces involved in lentiviral intasome formation. We show that the homomeric interfaces involved in IN hexadecamer formation and the α-helical configuration of the linker connecting the C-terminal and catalytic core domains are critical for MVV IN strand transfer activity in vitro and for virus infectivity. Single-molecule microscopy in conjunction with photobleaching reveals that the MVV intasome can bind a variable number, up to sixteen molecules, of the lentivirus-specific host factor LEDGF/p75. Concordantly, ablation of endogenous LEDGF/p75 results in gross redistribution of MVV integration sites in human and ovine cells. Our data confirm the importance of the expanded architecture observed in cryo-EM studies of lentiviral intasomes and suggest that this organization underlies multivalent interactions with chromatin for integration targeting to active genes.


Assuntos
DNA Viral , Integrases , Animais , Humanos , Domínio Catalítico , DNA Viral/metabolismo , Integrases/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Modelos Moleculares , Retroviridae/genética , Ovinos/genética , Integração Viral
16.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632668

RESUMO

Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.


Assuntos
Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacologia , HIV-1/genética , HIV-1/metabolismo , Humanos , RNA Viral/genética , RNA Viral/metabolismo
17.
Cells ; 11(4)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203306

RESUMO

HIV-1 integrase and capsid proteins interact with host proteins to direct preintegration complexes to active transcription units within gene-dense regions of chromosomes for viral DNA integration. Analyses of spatially-derived genomic DNA coordinates, such as nuclear speckle-associated domains, lamina-associated domains, super enhancers, and Spatial Position Inference of the Nuclear (SPIN) genome states, have further informed the mechanisms of HIV-1 integration targeting. Critically, however, these different types of genomic coordinates have not been systematically analyzed to synthesize a concise description of the regions of chromatin that HIV-1 prefers for integration. To address this informational gap, we have extensively correlated genomic DNA coordinates of HIV-1 integration targeting preferences. We demonstrate that nuclear speckle-associated and speckle-proximal chromatin are highly predictive markers of integration and that these regions account for known HIV biases for gene-dense regions, highly transcribed genes, as well as the mid-regions of gene bodies. In contrast to a prior report that intronless genes were poorly targeted for integration, we find that intronless genes in proximity to nuclear speckles are more highly targeted than are spatially-matched intron-containing genes. Our results additionally highlight the contributions of capsid and integrase interactions with respective CPSF6 and LEDGF/p75 host factors in these HIV-1 integration targeting preferences.


Assuntos
HIV-1 , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Cromatina/metabolismo , HIV-1/genética , HIV-1/metabolismo , Interações Hospedeiro-Patógeno/genética , Integração Viral/genética
18.
Nat Rev Microbiol ; 20(1): 20-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34244677

RESUMO

A hallmark of retroviral replication is establishment of the proviral state, wherein a DNA copy of the viral RNA genome is stably incorporated into a host cell chromosome. Integrase is the viral enzyme responsible for the catalytic steps involved in this process, and integrase strand transfer inhibitors are widely used to treat people living with HIV. Over the past decade, a series of X-ray crystallography and cryogenic electron microscopy studies have revealed the structural basis of retroviral DNA integration. A variable number of integrase molecules congregate on viral DNA ends to assemble a conserved intasome core machine that facilitates integration. The structures additionally informed on the modes of integrase inhibitor action and the means by which HIV acquires drug resistance. Recent years have witnessed the development of allosteric integrase inhibitors, a highly promising class of small molecules that antagonize viral morphogenesis. In this Review, we explore recent insights into the organization and mechanism of the retroviral integration machinery and highlight open questions as well as new directions in the field.


Assuntos
Integrases/química , Integrases/metabolismo , Retroviridae/enzimologia , Integração Viral , Cristalografia por Raios X , DNA Viral/genética , Integrase de HIV/química , Integrase de HIV/metabolismo , HIV-1/enzimologia , HIV-1/metabolismo , Humanos , Integrases/genética , Modelos Moleculares , Conformação Proteica , Retroviridae/classificação
19.
Retrovirology ; 18(1): 37, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809662

RESUMO

BACKGROUND: During HIV-1 maturation, Gag and Gag-Pol polyproteins are proteolytically cleaved and the capsid protein polymerizes to form the honeycomb capsid lattice. HIV-1 integrase (IN) binds the viral genomic RNA (gRNA) and impairment of IN-gRNA binding leads to mis-localization of the nucleocapsid protein (NC)-condensed viral ribonucleoprotein complex outside the capsid core. IN and NC were previously demonstrated to bind to the gRNA in an orthogonal manner in virio; however, the effect of IN binding alone or simultaneous binding of both proteins on gRNA structure is not yet well understood. RESULTS: Using crosslinking-coupled selective 2'-hydroxyl acylation analyzed by primer extension (XL-SHAPE), we characterized the interaction of IN and NC with the HIV-1 gRNA 5'-untranslated region (5'-UTR). NC preferentially bound to the packaging signal (Psi) and a UG-rich region in U5, irrespective of the presence of IN. IN alone also bound to Psi but pre-incubation with NC largely abolished this interaction. In contrast, IN specifically bound to and affected the nucleotide (nt) dynamics of the apical loop of the transactivation response element (TAR) and the polyA hairpin even in the presence of NC. SHAPE probing of the 5'-UTR RNA in virions produced from allosteric IN inhibitor (ALLINI)-treated cells revealed that while the global secondary structure of the 5'-UTR remained unaltered, the inhibitor treatment induced local reactivity differences, including changes in the apical loop of TAR that are consistent with the in vitro results. CONCLUSIONS: Overall, the binding interactions of NC and IN with the 5'-UTR are largely orthogonal in vitro. This study, together with previous probing experiments, suggests that IN and NC binding in vitro and in virio lead to only local structural changes in the regions of the 5'-UTR probed here. Accordingly, disruption of IN-gRNA binding by ALLINI treatment results in local rather than global secondary structure changes of the 5'-UTR in eccentric virus particles.


Assuntos
Infecções por HIV/virologia , Integrase de HIV/metabolismo , HIV-1/fisiologia , RNA Viral/química , RNA Viral/metabolismo , Vírion/fisiologia , Regiões 5' não Traduzidas , Regulação Viral da Expressão Gênica , Genoma Viral , Integrase de HIV/genética , HIV-1/química , HIV-1/genética , Humanos , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/genética , Sequência de Empacotamento Viral , Vírion/química , Vírion/genética , Montagem de Vírus
20.
Comput Struct Biotechnol J ; 19: 5688-5700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765089

RESUMO

Transmission electron microscopy (TEM) has a multitude of uses in biomedical imaging due to its ability to discern ultrastructure morphology at the nanometer scale. Through its ability to directly visualize virus particles, TEM has for several decades been an invaluable tool in the virologist's toolbox. As applied to HIV-1 research, TEM is critical to evaluate activities of inhibitors that block the maturation and morphogenesis steps of the virus lifecycle. However, both the preparation and analysis of TEM micrographs requires time consuming manual labor. Through the dedicated use of computer vision frameworks and machine learning techniques, we have developed a convolutional neural network backbone of a two-stage Region Based Convolutional Neural Network (RCNN) capable of identifying, segmenting and classifying HIV-1 virions at different stages of maturation and morphogenesis. Our results outperformed common RCNN backbones, achieving 80.0% mean Average Precision on a diverse set of micrographs comprising different experimental samples and magnifications. We expect that this tool will be of interest to a broad range of researchers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...